Bodrenko.com
Bodrenko.org

Учебные дисциплины на сайте Bodrenko.org
Портабельные Windows-приложения на сайте Bodrenko.com
"Геометрические методы математической физики" Компьютерные науки Математика и информатика Векторный и тензорный анализ Теория игр Аналитическая геометрия и линейная алгебра Римановы многообразия Элементы вариационного исцисления Дифференциальная геометрия и топология "Геометрия подмногообразий" Дополнительные главы дифференциальной геометрии "Диффиренциальные уравнения на многообразиях" "Дифференциальная геометрия и топология кривых" Bodrenko.com Bodrenko.org

Bodrenko.org

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

 

Кафедра  фундаментальной информатики и оптимального управления

Бодренко И.И., к. ф. м.-н., доцент

 

 

 

 

 

Учебно-методический комплекс по дисциплине

                                    ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ 

                                                                                                                     

 

 

Специальность: 010100  Математика

 

 

Утверждено

Рекомендовано

Ученым советом факультета

Протокол №_

«____»_____________ 200_г.

кафедрой  ______________________

Протокол №_

«____»____________ 200_г.

Декан факультета__________

Лосев А.Г.      

Зав. кафедрой____________________

Воронин А.А.

 

 

 

 

 

 

 

 

 

 

Волгоград 2009 г.

 

 

Автор-составитель:

Бодренко И.И.,  к. ф. м.-н.,  доцент 

 

 

Учебно-методический комплекс по дисциплине «Дифференциальная геометрия» 

составлен в соответствии с требованиями Государственного образовательного стандарта высшего профессионального образования по специальности 010100  Математика.

 

Дисциплина входит в федеральный компонент цикла  математических и естественнонаучных  дисциплин и является обязательной для изучения.

 

 

__________________________________________________________________________

 

 

 

 

 

 


 

СОДЕРЖАНИЕ

 

Стр.

1.     Рабочая программа учебной дисциплины

4

2.     Методические рекомендации по изучению дисциплины для студентов

2.1.         Советы по планированию и организации времени, необходимого на изучение дисциплины.

2.2.         Описание последовательности действий студента по изучению дисциплины.

2.3.         Рекомендации по использованию материалов учебно-методического комплекса и по работе     с литературой.

2.4.         Советы по подготовке к экзамену и разъяснения по поводу работы с тестовой системой курса, по выполнению домашних заданий.

11             

 

 

 

11

 

11

 

 

12

 

 

12

3.     Учебно-методические материалы (УММ)

3.1.         Лекции

3.2.         Практические занятия: план проведения занятий; списки типовых задач по каждой теме, рекомендуемые сборники задач по каждой теме.

3.3.         Методические указания для преподавателей, ведущих практические занятия.

4.     Словарь терминов

5.     Формы текущего, промежуточного, рубежного и итогового контроля:

5.1.         Контрольные вопросы по каждой теме.

5.2.         Контрольные работы, тесты.

14

14

16

 

 

 

17

17

 

19

19

21

6.     Балльно-рейтинговая система оценки успеваемости студентов по дисциплине

30

 

 

 

 

 

 

 

Федеральное агенство по образованию Российской Федерации

ГОУ ВПО "ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"

 ФАКУЛЬТЕТ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

КАФЕДРА ФУНДАМЕНТАЛЬНОЙ ИНФОРМАТИКИ И ОПТИМАЛЬНОГО УПРАВЛЕНИЯ




 
    УТВЕРЖДЕНО                                                                    УТВЕРЖДАЮ
   Ученым советом                                                               Декан факультета
     факультета
Протокол N        от                                                           _____________ А.Г. Лосев
"______ " ___________  2008 г.                                "______ " ___________  2008 г.
 
 




Программа учебной дисциплины
"ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ"
по направлению подготовки бакалавров
"Математика".
Факультет математики и информационных технологий.




 
 
Составитель рабочей программы:
 
Доцент кафедры ФИОУ, к.ф.м.н., доцент   Бодренко И.И. _____________
 




Волгоград 2008 г.



I. Аннотация.


Рабочая программа составлена на основании государственного стандарта высшего профессионального образования по курсу "Дифференциальная геометрия" и учебного плана по специальности "Математика" ВолГУ.

I.1. ЦЕЛЬ ПРЕПОДАВАНИЯ ДИСЦИПЛИНЫ.

Цель преподавания курса "Дифференциальная геометрия" --- формирование у студентов правильных представлений об основных понятиях дифференциальной геометрии, введение в методы исследований кривых и поверхностей, подготовка к дальнейшему изучению разделов современной геометрии.

I.2. ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ.


            Студент должен знать следующие понятия и определения. Кривые: определение кривой,  способы задания, кривизна плоских кривых, пространственные кривые, кривизна и кручение пространственных кривых, репер Френе, формулы Френе, длина кривой, натуральный параметр кривой, натуральные уравнения кривой, эволюта, эвольвента; Поверхности: определение поверхности, внутренние координаты на поверхности, касательная плоскость, площадь поверхности, кривизна кривых на поверхности, нормаль,  вторая квадратичная форма и ее свойства, инварианты пары квадратичных форм, главные направления и линии кривизны, главные кривизны, гауссова и средняя кривизны; нормальная кривизна, асимптотические направления и линии на поверхности, геодезическая кривизна, символы Кристоффеля поверхности, геодезические. Многомерные геометрические объекты: проективное пространство, аффинная карта проективного пространства, модели проективных пространств малой размерности, метрические группы, проективное пространство, модели проективной прямой и проективной плоскости.

            Студент должен понимать основные определения дифференциальной геометрии, разбираться в доказательствах основных теорем курса.

I.3. ВЗАИМОСВЯЗЬ УЧЕБНЫХ ДИСЦИПЛИН.

Понятия дифференциальной геометрии взаимосвязаны с фундаментальными общематематическими курсами: математическим анализом, механикой, курсом дифференциальных уравнений, функциональным анализом. Методы дифференциальной геометрии проникли во многие разделы математического естествознания: математическую экономику, математическую экологию, и приобрели универсальное значение. При изложение курса "Дифференциальная геометрия" используются понятия следующих дисциплин учебного плана по специальности "математика": математический анализ, алгебра, линейная алгебра и геометрия, аналитическая геометрия, дифференциальные уравнения.

 


            Методика формирования результирующей оценки.
Выполнение каждой письменной контрольной работы оценивается от 0 до 12 баллов.
Выполнение студентом заданий на каждом практическом занятии оценивается от 0 до 2  баллов.  Рейтинговая оценка работы студента в семестре равна сумме баллов за 3 контрольные работы и практические занятия, и может достичь 72 баллов. Студент, набравший в результате текущего семестрового контроля менее 20 баллов, к зачету не допускается; ему выставляется итоговая оценка "незачтено".
Зачет по дисциплине проводится в письменном виде. Зачетный билет содержит 5 пунктов, содержащих как теоретические вопросы, так и задачи. Ответ студента на каждый пункт билета оценивается от 0 до 8 баллов.
Итоговая рейтинговая оценка знаний студента равна сумме баллов, полученных в течение семестра за выполнение контрольных работ, и до 40 баллов, полученных за письменную экзаменационную работу в конце семестра (но не более 100 баллов).
Итоговая пятибальная оценка по дисциплине определяется в соответствии со следующей схемой: если количество баллов не меньше 60, то выставляется оценка "зачтено".

В семестре студенты сдают зачет.


II. CОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ.


1. Объем дисциплины и виды учебной работы.

N п/п

Вид учебной работы

Всего часов

1.

Аудиторные занятия (всего)

72

1.1

Лекции

36

1.2.

Практические занятия

36

2.

Самостоятельная работа (всего)

32

3.

Общая трудоемкость дисциплины

104

4.

Вид итогового контроля

Зачет



2. Тематический план дисциплины.

 

Номер темы

Тематика лекций и практических занятий

Лекции (часов)

Практ. занятия (часов)

1.

ОСНОВЫ ТЕОРИИ КРИВЫХ.

14

14

2.

ОСНОВЫ ТЕОРИИ ПОВЕРХНОСТЕЙ.

16

16

3.

ПРОЕКТИВНЫЕ ПРОСТРАНСТВА.

6

6

 

Всего часов

36

36



 

3. Содержание лекций и практических занятий.

3.1. Содержание лекций.

Номер темы

Название темы, наименование вопросов, изучаемых на лекциях

Кол - во часов

Практи- ческие работы

Методи- ческие указания

Форма контроля

1

2

3

4

5

6

 

 

 

 

 

 

1.

ОСНОВЫ ТЕОРИИ КРИВЫХ.

14

14

Ш.3, 4

К.р., зач.

 

 

 

 

 

 

1.1.

Понятие кривой. Плоские кривые, задаваемые параметрически, пространственные кривые. Гладкие и регулярные кривые, касательная к кривой.

4

1.1

 

 

1.2.

Длина дуги кривой, определение и основные свойства. Натуральный параметр. Натуральные уравнения кривой.

2

1.2

 

 

1.3.

Соприкасающаяся плоскость, главная нормаль и бинормаль кривой. Трехгранник Френе.

4

1.3

 

 

1.4.

Формулы Френе, кривизна и кручение кривой, вид кривой вблизи данной точки.

4

1.4

 

 

 

 

 

 

 

 

2.

ОСНОВЫ ТЕОРИИ ПОВЕРХНОСТЕЙ.

16

16

Ш.3, 4

К.р., зач.

 

 

 

 

 

 

2.1.

Понятие поверхности. Гладкие и регулярные поверхности, касательная плоскость к поверхности.

2

2.1

 

 

2.2.

Первая квадратичная форма поверхности, длина кривой на поверхности, угол между кривыми на поверхности.

2

2.2

 

 

2.3.

Вторая квадратичная форма, кривизна кривой на поверхности, главные кривизны, линии кривизны, теорема Родрига, формула Эйлера, асимптотические направления, асимптотические линии, средняя и гауссова кривизна.

6

2.3

 

 

2.4.

Символы Кристоффеля. Геодезические.

2

 

 

 

2.5.

Деривационные формулы. Основные уравнения теории поверхностей.

4

 

 

 

 

 

 

 

 

 

3.

ПРОЕКТИВНЫЕ ПРОСТРАНСТВА.

4

4

Ш.3, 4

К.р., зач.

 

 

 

 

 

 

3.1.

Проективное пространство. Локальные координаты, аффинная карта проективного пространства.

2

3.1, 3.2

 

 

3.2.

Модели проективных пространств.

2

3.1, 3.2

 

 

 

3.2. Содержание практических занятий.

Номер

 

Объем,

практичес-

Наименование практической работы

час

кой работы

 

 

1

2

3

 

 

 

1.

ОСНОВЫ ТЕОРИИ КРИВЫХ.

14

 

 

 

1.1.

Плоские кривые, задаваемые параметрически, пространственные кривые. Гладкие и регулярные кривые, касательная к плоской кривой. Угол между кривыми.

2

1.2.

Длина дуги кривой. Натуральная параметризация кривой, натуральные уравнения.

4

1.3.

Касательная к пространственной кривой, нормальная плоскость. Соприкасающаяся плоскость.

4

1.4.

Базис Френе, построение трехгранника Френе. Кривизна и кручение кривой.

4

 

 

 

2.

ОСНОВЫ ТЕОРИИ ПОВЕРХНОСТЕЙ

16

 

 

 

2.1.

Составление уравнений поверхностей, нахождение касательной плоскости к поверхности.

4

2.2.

Первая квадратичная форма поверхности: вычисление длины кривой на поверхности, угла между кривыми на поверхности.

4

2.3.

Вычисление второй квадратичной формы, нахождение главных кривизн, линий кривизны, асимптотических направлений, асимптотических линий, средней и гауссовой кривизн. Уравнения геодезических.

8

3.

ПРОЕКТИВНЫЕ ПРОСТРАНСТВА

4

 

 

 

3.1.

Вещественные проективные пространства.

2

3.2.

Комплексные проективные пространства.

2





 


III. Программа зачета.

1.    ОСНОВЫ ТЕОРИИ КРИВЫХ.
               1.1.  Понятие кривой. Плоские кривые, задаваемые
параметрически, пространственные кривые. Гладкие и регулярные
кривые, касательная к  кривой.
               1.2.  Длина дуги кривой, определение и основные свойства.
Натуральный параметр. Натуральные уравнения кривой.
               1.3.  Соприкасающаяся плоскость, главная нормаль и бинормаль кривой.
Трехгранник Френе.
               1.4.  Формулы Френе, кривизна и кручение кривой, вид кривой
вблизи данной точки.
 
2.    ОСНОВЫ ТЕОРИИ ПОВЕРХНОСТЕЙ.
               2.1.  Понятие поверхности. Гладкие и регулярные поверхности,
касательная плоскость к поверхности.
               2.2.  Первая квадратичная форма поверхности, длина кривой на поверхности,
угол между кривыми на поверхности.
               2.3.  Вторая квадратичная форма, кривизна кривой на поверхности,
главные кривизны, линии кривизны, теорема Родрига, формула Эйлера,
асимптотические направления, асимптотические линии, средняя и гауссова кривизна.
               2.4.  Символы Кристоффеля. Геодезические.
               2.5.  Деривационные формулы. Основные уравнения теории поверхностей.
 
3.    ПРОЕКТИВНЫЕ ПРОСТРАНСТВА.
3.1. Проективное пространство. Локальные координаты, аффинная карта проективного пространства.
3.2. Модели проективных пространств.
 
  1. Учебно-методическое обеспечение.
    Лекции и практические занятия в основном рассчитаны на применение учебных пособий [1-4], методических рекомендаций [1-2], и электронных методических рекомендаций [1].
    Наш вариант изложения дисциплины имеет своей целью удобство ее приложений в других дисциплинах курса обучения. Другие варианты изложения и дополнительные результаты могут быть получены студентами из книг, приведенных в списке литературы.
    В лекциях обсуждаются решения всех задач, включаемых в контрольные работы и экзаменационные билеты.
    В течение семестра на практических занятиях проводится 3 контрольные работы. Расчетная продолжительность каждой контрольной работы не превышает 2 часа. Задания для контрольных работ (без разбиения на варианты) содержатся в электронных методических указаниях [1] и также доступны студентам без ограничений.

 

 


V. ЛИТЕРАТУРА.
V.1. ЛИТЕРАТУРА.

1. Позняк Э. Г., Шикин Е.В. Дифференциальная геометрия. М.: Изд-во МГУ. 1990.
2. Постников М. М. Гладкие многообразия. М.: Наука. 1987.
3. Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. М.: Наука, 1986.
4. Мищенко А.С., Соловьев Ю. П., Фоменко А.Т. Сборник задач по дифференциальной геометрии и топологии. М.: Изд-во МГУ, 1981.

V.2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

1. Бодренко И.И. "Дифференциальная геометрия. Сборник задач. Ч.1". Изд-во ВолГУ. 1999 г. 32 с.
2. Фонд контрольных заданий по курсу "Дифференциальная геометрия". (Варианты контрольных работ. Составитель -- Бодренко И.И.)
3. Программа зачета по курсу "Дифференциальная геометрия". (Электронные методические указания. Составитель -- Бодренко И.И.)




 

 

 

 

 

Программа учебной дисциплины утверждена сроком на 4 года 

на заседании кафедры фундаментальной информатики и оптимального управления
29 августа 2008 г., протокол N 1.

Заведующий кафедрой ______________________ А.А. Воронин





 

 

 

 

 

 

 

 

2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ ДЛЯ СТУДЕНТОВ

           

2.1.  Советы по планированию и организации времени, необходимого для изучения дисциплины.

            При изучении дисциплины «Топология» необходимо работать с теоретическим материалом, излагаемым на лекциях, на протяжении всего семестра систематически и последовательно решать задачи на практических занятиях.  Планирование и организация времени, необходимого для изучения дисциплины «Топология», должны проводиться в соответствии со следующими установленными объемом и видами учебной работы.

                                    Объем дисциплины и виды учебной работы.


N п/п

Вид учебной работы

Всего часов

1.

Аудиторные занятия (всего)

36

1.1

Лекции

18

1.2.

Практические занятия

18

2.

Самостоятельная работа (всего)

48

3.

Общая трудоемкость дисциплины

84

4.

Вид итогового контроля

Экзамен



2.2. Описание последовательности действия студента при  изучении дисциплины.

Изучение дисциплины «Топология» проводится в соответствии со следующим тематическим планом.

            Тематический план изучения дисциплины «Топология».

Номер темы

Тематика лекций и практических занятий

Лекции(часов)

Практические занятия (часов)

1.

ЭЛЕМЕНТЫ ОБЩЕЙ ТОПОЛОГИИ.

4

4

2.

ДИФФЕРЕНЦИРУЕМЫЕ МНОГООБРАЗИЯ. ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОЙ ТОПОЛОГИИ.

4

4

3.

ТЕНЗОРНЫЙ АНАЛИЗ НА МНОГООБРАЗИЯХ.

6

6

4.

ТОПОЛОГИЯ МНОГООБРАЗИЙ.

4

4

 

Всего часов

18

18

 

            После изучения теоретических вопросов по теме каждой лекции и решения задач  необходимо определить наиболее трудные для понимания вопросы и нерешенные задачи. В случае если ответы на вопросы не удается получить самостоятельно, целесообразно проконсультироваться с преподавателем.

 
2. 3.  Рекомендации по использованию материалов учебно-методического комплекса и по работе с литературой.

                Лекции и практические занятия в основном рассчитаны на применение учебных пособий [1-5], методических рекомендаций [1-2], и электронных методических рекомендаций [1]. Наш вариант изложения дисциплины имеет своей целью удобство ее приложений в других дисциплинах курса обучения. Другие варианты изложения и дополнительные результаты могут быть получены студентами из книг, приведенных в списке литературы.  На лекциях обсуждаются решения всех задач, включаемых в контрольные работы и экзаменационные билеты.  В течение каждого семестра на занятиях проводятся 3 контрольные работы. Расчетная продолжительность каждой контрольной работы не превышает 2 часа. Задания для контрольных работ (без разбиения на варианты) содержатся в электронных методических указаниях [1] и также доступны студентам без ограничений.
               Материалы учебно-методического комплекса целесообразно использовать в течение всего периода изучения дисциплины. Изучение теоретических вопросов, излагаемых на лекциях, необходимо сопровождать изучением соответствующих разделов в предлагаемой литературе. Необходимый минимум теоретического материала и типовые задачи по изучаемым в дисциплине «Топология» вопросам содержатся в следующих учебниках и сборниках задач. 

 

1. Борисович Ю.Г. и др. Введение в топологию. - М.: Наука, 1995.
2. Постников М. М. Гладкие многообразия. М.: Наука. 1987.
3. Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. М.: Наука, 1986.
4. Мищенко А.С., Соловьев Ю. П., Фоменко А.Т. Сборник задач по дифференциальной геометрии и топологии. М.: ФИЗМАТЛИТ, 2004.
5. Бодренко А.И., Бодренко И.И. Общая топология. Учебно-методическое пособие. г. Волгоград. Издательство Волгу. 2007.

               При подготовке к контрольным работам и экзамену целесообразно также использовать  следующие  учебно-методические материалы.

1. Фонд контрольных заданий по курсу "Топология". (Варианты контрольных работ. Составитель -- Бодренко И.И.)
2. Программа экзамена по курсу "Топология". (Электронные методические указания. Составитель -- Бодренко И.И.)


2. 4.  Советы по подготовке к экзамену  и разъяснения по поводу работы с тестовой системой курса, по выполнению домашних заданий.

 

В течение семестра на занятиях проводятся 3 контрольные работы. Расчетная продолжительность каждой контрольной работы не превышает 2 часа. Задания для контрольных работ (без разбиения на варианты) содержатся в электронных методических указаниях [1] и также доступны студентам без ограничений.
Выполнение каждой письменной контрольной работы оценивается от 0 до 12 баллов. Выполнение студентом заданий на каждом практическом занятии оценивается от 0 до 4 баллов.  Домашние задания следует выполнять в наиболее полном объеме и в срок.

            Рейтинговая оценка работы студента в семестре равна сумме баллов за 3 контрольные работы и практические занятия, и может достичь 72 баллов. Студент, набравший в результате текущего семестрового контроля менее 20 баллов, к экзамену  не допускается; ему выставляется итоговая пятибалльная оценка "неудовлетворительно".

Экзамен  по дисциплине проводится в письменном виде. Экзаменационный билет содержит 5 пунктов, содержащих как теоретические вопросы, так и задачи. Ответ студента на каждый пункт билета оценивается от 0 до 8 баллов.

Сложные разделы дисциплины должны быть тщательно проработаны и при необходимость вынесены на предэкзаменационную консультацию.

Итоговая рейтинговая оценка знаний студента равна сумме баллов, полученных в течение семестра за выполнение контрольных работ, и до 40 баллов, полученных за письменную экзаменационную работу в конце семестра (но не более 100 баллов).

Итоговая пятибалльная оценка по дисциплине определяется в соответствии со следующей схемой: если количество баллов не меньше 91, то выставляется оценка "отлично", иначе, если количество баллов не меньше 71, то выставляется оценка "хорошо", иначе, если количество баллов не меньше 60, то выставляется оценка "удовлетворительно".

В семестре студенты сдают экзамен.


 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

3. УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

3.1. ЛЕКЦИИ

ТЕМА 1.  ЭЛЕМЕНТЫ ОБЩЕЙ ТОПОЛОГИИ.

            Лекция 1. Топологические пространства. Операции над открытыми и замкнутыми множествами. Окрестности, предельные точки. Базы, предбазы. Первая и вторая аксиомы счетности.  Метрические пространства. Открытые и замкнутые множества. Непрерывные отображения метрических и топологических пространств. Свойства. Гомеоморфизмы. Открытые и замкнутые отображения.

            Лекция 2. Связность, критерий связности. Свойства связных множеств. Компоненты связности. Аксиомы отделимости: хаусдорфность, регулярность, нормальность. Компактные пространства. Непрерывные функции на компактах. Непрерывные отображения компактных пространств.

ТЕМА 2. ДИФФЕРЕНЦИРУЕМЫЕ МНОГООБРАЗИЯ. ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОЙ ТОПОЛОГИИ.

            Лекция 3. Понятие дифференцируемого многообразия. Карты и атласы. Локальные координаты. Дифференцируемая структура. Гладкие функции на многообразии.Разбиение единицы. Гладкие отображения.Диффеоморфизм. Ранг гладкого отображения.

            Лекция 4. Касательный вектор к многообразию. Дифференциал гладкого отображения. Свойства касательного отображения.

ТЕМА 3. ТЕНЗОРНЫЙ АНАЛИЗ НА МНОГООБРАЗИЯХ.

            Лекция 5. Тензоры на римановом многообразии: общее определение тензора, алгебраические операции над тензорами. Кососимметрические тензоры, дифференциальные формы.

            Лекция 6. Ковариантная производная тензоров, связность, согласованная с метрикой, параллельный перенос тензорных полей, геодезические. Тензор кривизны и его свойства. Тензор кривизны двух- и трехмерных многообразий.

            Лекция 7.Теория интегрирования дифференциальных форм. Общая формула Стокса.

ТЕМА 4. ТОПОЛОГИЯ МНОГООБРАЗИЙ.

            Лекция 8. Гомотопия. Определение гомотопии, аппроксимация отображений и гомотопий гладкими, относительная гомотопия.

            Лекция 9. Определение степени отображения. Гомотопическая классификация отображений многообразия в сферу. Степень векторного поля на поверхности. Теорема Гаусса – Бонне. Особая точка векторного поля, индекс особой точки векторного поля; теорема Пуанкаре – Бендиксона. 

3. 2. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ


 ТЕМА 1.  ЭЛЕМЕНТЫ ОБЩЕЙ ТОПОЛОГИИ.  

  1. Декартовы прямоугольные координаты на плоскости. Преобразование координат. Полярные координаты. Задачи: № 26 – 85 [2].
  2. Деление отрезка в данном отношении. Площадь треугольника. Задачи № 86 – 126 [2].
  3. Декартовы прямоугольные координаты в пространстве. Расстояние между точками. Деление отрезка в данном отношении. Задачи: № 719 – 747 [2].
  4. Векторы, свободный вектор. Линейные операции над векторами: сумма векторов, произведение вектора на число. Задачи:  № 748 – 775 [2].
  5. Линейная зависимость и независимость векторов. Геометрический смысл линейной зависимости: коллинеарные векторы, компланарные векторы. Свойства линейной зависимости. Базисы. Задачи: № 776 – 794 [2].
  6.  Длина вектора и угол между векторами. Скалярное произведение векторов. Задачи: № 795 – 838 [2].
  7. Векторное произведение векторов.  Задачи: № 839 – 864 [2].
  8. Смешанное произведение векторов. Задачи: № 885 – 878 [2].

ТЕМА 2. ДИФФЕРЕНЦИРУЕМЫЕ МНОГООБРАЗИЯ. ЭЛЕМЕНТЫ ДИФФЕРЕНЦИАЛЬНОЙ ТОПОЛОГИИ.

  1. Прямая на плоскости, различные виды ее уравнений (каноническое уравнение прямой на плоскости, общее уравнение прямой на плоскости, уравнение прямой с угловым коэффициентом, уравнение прямой, проходящей через две точки, уравнение прямой «в отрезках»), переход от одного вида уравнения прямой к другому. Неполные уравнения прямой. Задачи: № 210 – 221, 285 – 308 [2].
  2. Прямая на евклидовой плоскости. Нормальный вектор прямой. Взаимное расположение двух прямых на плоскости. Угол между прямыми. Условие перпендикулярности двух прямых. Задачи: № 222 – 284 [2].
  3. Расстояние от точки до прямой на плоскости. Расстояние между параллельными прямыми. Разделение плоскости прямой. Задачи: № 309 – 352 [2].
  4. Плоскость, различные виды ее уравнений (параметрические уравнения плоскости, общее уравнение плоскости, уравнение плоскости, проходящей через три неколлинеарные точки, уравнение плоскости «в отрезках»). Переход от одного вида уравнения плоскости к другому. Неполные уравнения плоскости. Задачи: № 940 – 952 [2].
  5. Плоскость в евклидовом пространстве. Нормальный вектор плоскости. Взаимное расположение двух плоскостей.
  6. Расстояние от точки до плоскости. Расстояние между двумя параллельными плоскостями. Задачи: № 956 – 973 [2].
  7. Прямая в пространстве. Различные виды ее уравнений (параметрические уравнения, канонические уравнения прямой в пространстве). Прямая как линия пересечения двух плоскостей, нахождение направляющего вектора прямой и начальной точки. Уравнения плоскости: проходящей через прямую и точку, ей не принадлежащую; через две параллельные прямые; через две пересекающиеся прямые. Задачи: № 982 – 1006, 1007 - 1021 [2].
  8. Угол между плоскостями. Условие перпендикулярности двух плоскостей. Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью. Условие перпендикулярности прямой и плоскости. Задачи: № 982 – 1006, 1007 - 1021 [2].
  9. Взаимное расположение двух прямых в пространстве. Разделение пространства плоскостью.             Задачи: № 974 – 981, 1026 – 1029, 1007 - 1021 [2].
  10. Расстояние от точки до прямой в пространстве. Расстояние между двумя прямыми в пространстве. Уравнения общего перпендикуляра двух скрещивающихся прямых в пространстве. Задачи: № 1029 – 1031, 1062 – 1064, 1083 [2].

ТЕМА 3. ТЕНЗОРНЫЙ АНАЛИЗ НА МНОГООБРАЗИЯХ.

 

  1.  Гипербола. Каноническое уравнение гиперболы. Фокальное, директориальное и оптическое свойства гиперболы. Задачи: № 515 – 573 [2].
  2. Парабола. Каноническое уравнение параболы. Директориальное и оптическое свойства параболы. Задачи: № 583 – 627 [2].
  3. Центр симметрии линий второго порядка.  Центральные и нецентральные линии второго порядка. Задачи: № 665 – 669 [2].
  4. Взаимное расположение прямой и линии второго порядка. Прямые асимптотического направления. Асимптоты.  Прямые неасимптотического направления. Касательные. Задачи: № 670 – 672 [2].
  5. Особые и неособые направления. Свойства. Взаимно сопряженные направления. Самосопряженные направления. Диаметры линии второго порядка. Задачи: № 643 – 663 [2].
  6. Упрощение уравнения центральной линии второго порядка. Задачи: № 673 – 688 [2].
  7. Упрощение уравнения нецентральной линии второго порядка. Задачи: № 689 – 700 [2].
  8.  Эллипсоиды и их плоские сечения.  Однополостный и двуполостный гиперболоиды и их плоские сечения. Эллиптический и гиперболический параболоиды и их плоские сечения. Задачи: № 1154 – 1180 [2].
  9.  Прямолинейные образующие однополостного гиперболоида. Свойства прямолинейных образующих гиперболического параболоида. Задачи: № 1181 – 1185 [2].
  10. Цилиндрические поверхности второго порядка. Конические поверхности второго порядка. Задачи: № 1186 – 1203 [2].

ТЕМА 4. ЛИНЕЙНЫЕ И АФФИННЫЕ ПРЕОБРАЗОВАНИЯ.

  1. Линейные отображения плоскостей. Примеры. Выражение линейного отображения в координатах. Свойства линейных отображений плоскостей. Задачи: № 127 – 141 [2].
  2. Аффинные преобразования плоскости. Свойства. № 12.37 – 12.62 [3].
  3.  Ортогональные преобразования. Движения плоскости. Собственные и несобственные движения. № 12.63 – 12.89 [3].

ТЕМА 5.  ПРОЕКТИВНЫЕ ПРЕОБРАЗОВАНИЯ. 

  1. Центральная проекция. Бесконечно удаленные элементы евклидова пространства. Проективное пространство. Задачи: № 1883 – 1886 [4].
  2.  Интерпретация проективной прямой и проективной плоскости в связке прямых. Однородные координаты точки на проективной прямой и проективной плоскости. Задачи: № 1887 – 1889 [4].
  3. Проективные системы координат. Проективно-аффинные преобразования. Задачи: № 1890 – 1894 [4].
  4. Проективная классификация линий второго порядка. Задачи: № 1885 – 1901 [4].

 

           

 

 

 

 

 

            3.3. Методические указания для преподавателей, ведущих практические занятия.

           

            Практические  занятия необходимо проводить в строгом соответствии с планом, уделять должное внимание текущему контролю знаний студентов; контрольные работы проводить в запланированные сроки, представлять необходимую отчетность по модулям рабочей программы. Особое внимание уделять наиболее трудным для понимания вопросам, контролировать выполнение домашних заданий.

 

                                    4.  СЛОВАРЬ ТЕРМИНОВ

 

Аффинная система координат                    – см. [5], т. 1, с. 358

Аффинное пространство                             – см. [5], т. 1, с. 362

 

Базис                                                               – см. [5], т. 1, с. 633

ортонормированный                                                – см. [1], т. 1, с. 633

 

Вектор геометрический                               – см. [5], т. 1, с. 632

-         свободный                                         – см. [5], т. 1, с. 632

Векторное пространство                              – см. [5], т. 1, с. 633, с. 642

Векторы коллинеарные                               – см. [5], т. 1, с. 632

компланарные                                         – см. [5], т. 1, с. 632

, линейная комбинация                          – см. [5], т. 1, с. 633

линейно зависимые                                – см. [5], т. 1, с. 633

линейно независимые                            – см. [5], т. 1, с. 633

ортогональные                                        – см. [5], т. 1, с. 634

равные                                                      – см. [5], т. 1, с. 632

 

Гипербола                                                      – см. [5], т. 1, с. 987

Гиперболоид двуполостный                       – см. [5], т. 1, с. 1000

-         однополостный                                 – см. [5], т. 1, с. 1000

 

Движение                                                      – см. [5], т. 2, с. 20

Декартовы прямоугольные координаты    – см. [5], т. 1, с. 634

Диаметр                                                         – см. [5], т. 2, с. 127

 

Конические сечения                                     – см. [5], т. 2, с. 1034

Конус действительный                                – см. [5], т. 4, с. 344

-         мнимый                                              – см. [5], т. 4, с. 344

Координаты вектора                                    – см. [5], т. 1, с. 633

Косинусы направляющие                            – см. [5], т. 1, с. 634

 

Линейные операции над векторами           – см. [5], т. 1, с. 632

-         , сумма векторов                               – см. [5], т. 1, с. 632

-         , произведение вектора на число    – см. [5], т. 1, с. 633

Линия второго порядка                                – см. [5], т. 3, с. 387

-         , инварианты                                     – см. [5], т. 3, с. 388

-         нецентральная                                   – см. [5], т. 3, с. 388

-         центральная                                       – см. [5], т. 3, с. 388

 

Модуль вектора                                             – см. [5], т. 1, с. 632

 

Однородные координаты                            – см. [5], т. 3, с. 1180

 

Парабола                                                        – см. [5], т. 4, с. 191                          

Параболоид                                                   – см. [5], т. 4, с. 201

-         гиперболический                              – см. [5], т. 1, с. 992

-         эллиптический                                  – см. [5], т. 5 с. 993

Плоскость                                                      – см. [5], т. 4, с. 318

-         , нормальный вектор                        – см. [5], т. 4, с. 319

Поверхность второго порядка                     – см. [5], т. 4, с. 343

-         центральная                                       – см. [5], т. 4, с. 344

-         нецентральная                                   – см. [5], т. 4, с. 344

Преобразование аффинное                          – см. [5], т. 1, с. 361

-         линейное                                            – см. [5], т. 3, с. 350

-         ортогональное                                   – см. [5], т. 4, с. 87    

Проективная классификация

линий второго порядка                                – см. [5], т. 3, с. 389

Проективная плоскость                               – см. [5], т. 4, с. 664

Проективное пространство                         – см. [5], т. 4, с. 679  

Проективные координаты                           – см. [5], т. 4, с. 680  

Произведение векторное                             – см. [5], т. 1, с. 635, с. 642

-         двойное векторное                           – см. [5], т. 4, с. 635

-         скалярное векторов                          – см. [5], т. 1, с. 634

-         смешанное векторов                         – см. [5], т. 1, с. 635

Прямая                                                           – см. [5], т. 4, с. 722

-         , нормальный вектор                        – см. [5], т. 4, с. 722

Пучок прямых                                               – см. [5], т. 4, с. 771

-         плоскостей                                         – см. [5], т. 4, с. 771

 

Тройка векторов правая                               – см. [5], т. 1, с. 634

-         левая                                                   – см. [5], т. 1, с. 634

 

Угол между векторами                                 – см. [5], т. 1, с. 634

Уравнения линий второго порядка            – см. [5], т. 3, с. 387

-         поверхностей второго порядка       – см. [5], т. 4, с. 343   

 

Центр             линии                                                             – см. [5], т. 3, с. 388

Цилиндр                                                        – см. [5], т. 4, с. 344

-         гиперболический                              – см. [5], т. 1, с. 992

-         параболический                                – см. [5], т. 4, с. 195

-         эллиптический                                  – см. [5], т. 5, с. 993

 

Эллипс                                                           – см. [5], т. 5, с. 977

Эллипсоид                                                     – см. [5], т. 5, с. 978

-         мнимый                                              – см. [5], т. 5, с. 978

 

 

 

 

ЛИТЕРАТУРА

 

            [1] Постников М.М.  Лекции по геометрии. Семестр I. Аналитическая геометрия.: Учебн. пособие для вузов. 2-е издание.,  М.: Наука. Гл. ред. физ.-мат. лит. 1986. - 416 с.           [2] Клетеник Д.В. Сборник задач по аналитической геометрии. - М.: Наука, 1987, 254 с.

            [3] Беклемишева Л.А., Петрович А.Ю., Чубаров И.А. Сборник задач по аналитической геометрии и линейной алгебре. Учебн. пособие.  М.: ФИЗМАТЛИТ. 2001. 496 с.

            [4] Бахвалов С.В., Моденов М.П., Пархоменко П.С. Сборник задач по аналитической геометрии. - М.: Наука. Гл. ред. физ. - мат. Лит. 1964.  440 с.

            [5] Математическая энциклопедия. Т. 1 – 5.  М. Издательство «Советская энциклопедия» 1977 – 1985. Т. 1 – 5.

 

 

 

  1. ФОРМЫ ТЕКУЩЕГО,  ПРОМЕЖУТОЧНОГО, РУБЕЖНОГО И ИТОГОВОГО КОНТРОЛЯ

 

 

 

5.1.КОНТРОЛЬНЫЕ ВОПРОСЫ ПО КАЖДОЙ ТЕМЕ

 

                                              ТЕМА 1. ВЕКТОРНАЯ АЛГЕБРА.
 
               1.1.  Понятие вектора, линейные операции над векторами. Векторное пространство. Примеры.
               1.2.  Линейная зависимость и независимость векторов, коллинеарность,      компланарность. Свойства линейной зависимости. Теорема о линейной зависимости.
               1.3.  Базисы. Теорема о числе векторов в базисах конечномерного     пространства. Размерность. Примеры.
               1.4.  Координаты вектора, суммы векторов, произведения вектора на число Однозначная определенность координат.
               1.5.  Полярно-сферические и полярно-цилиндрические системы координат.
               1.6.  Скалярное произведение векторов, свойства. Евклидово векторное  пространство. Неравенство Коши-Буняковского.
               1.7.  Понятие об ориентации пространства. Векторное произведение, свойства. (геометрический смысл, признак  коллинеарности векторов, антикоммутативность,  линейность).
               1.8. Смешанное произведение. Ориентированный объем  параллелепипеда. Свойства.
               1.9.  Скалярное произведение двух векторов и его выражение в прямоугольных       координатах.
               1.10. Выражение векторного произведения через координаты сомножителей в       ортонормированном базисе.
               1.11. Выражение смешанного произведения через координаты сомножителей.
 
                                              ТЕМА 2.  ПРЯМАЯ И ПЛОСКОСТЬ.
 
               2.1.  Аффинное пространство. Аффинная система координат. Прямая в аффинном пространстве.
               2.2.  Прямая на плоскости, различные виды ее уравнений, переход от одного       к другому. Взаимное расположение двух прямых на плоскости.
               2.3.  Плоскость, различные виды ее уравнений: векторное параметрическое;       координатные параметрические; общее уравнение плоскости; уравнение плоскости,  проходящей через три неколлинеарные точки. Переход от одного вида уравнения  к другому.
               2.4.  Взаимное расположение двух плоскостей.
               2.5.  Прямая в пространстве. Различные ее уравнения. Прямая как линия пересечения двух плоскостей, нахождение направляющего вектора и начальной точки.
               2.6.  Взаимное расположение прямой и плоскости.
               2.7.  Взаимное расположение двух прямых.
               2.8.  Уравнение плоскости, проходящей через прямую и точку, ей не       принадлежащую; через две параллельные прямые; через две пересекающиеся прямые.
               2.9.  Прямая на евклидовой плоскости. Нормальный вектор. Расстояние от точки до прямой на плоскости.
               2.10. Плоскость в евклидовом пространстве .Нормальный вектор плоскости.       Расстояние от точки до плоскости. Расстояние между двумя параллельными       плоскостями.
               2.11. Расстояние от точки до прямой в пространстве.
               2.12. Расстояние между двумя прямыми в пространстве. Общий перпендикуляр       к двум скрещивающимся прямым.
 
                                              ТЕМА 3. ЛИНИИ И ПОВЕРХНОСТИ.
 
               3.1.  Плоская линия и ее уравнение. Уравнения поверхностей и линий в       пространстве. Вывод уравнения поверхности вращения. Алгебраические линии и поверхности.
               3.2.  Каноническое уравнение эллипса. Свойства.
               3.3.  Каноническое уравнение гиперболы. Свойства.
               3.4.  Каноническое уравнение параболы. Свойства.
               3.5.  Взаимное расположение прямой и линии второго порядка. Асимптотические  направления.
               3.6.  Центр симметрии линий второго порядка.
               3.7.  Типы кривых, определяемых уравнением второй степени с двумя неизвестными (приведение к каноническому виду).
               3.8. Особые и неособые направления. Диаметры. Взаимно сопряженные направления.
               3.9. Поверхности вращения второго порядка. Цилиндрические поверхности      второго порядка.
               3.10. Сжатие пространства к плоскости. Канонические уравнения поверхностей       второго порядка.
               3.11. Эллипсоиды и их плоские сечения. Однополостный и двуполостный   гиперболоиды и их плоские сечения. Эллиптический и гиперболический  параболоиды и их плоские сечения.
               3.12. Прямолинейные образующие однополостного гиперболоида и гиперболического параболоида.
 
                               ТЕМА 4. ЛИНЕЙНЫЕ И АФФИННЫЕ ПРЕОБРАЗОВАНИЯ.
 
               4.1.  Переход от одной системы координат к другой. Ортогональные матрицы как матрицы перехода от одной прямоугольной  системы координат к другой прямоугольной системе координат.
               4.2.  Преобразование плоскости. Примеры. Линейные отображения плоскостей,       свойства.
               4.3.  Аффинные преобразования, свойства.
               4.4.  Изометрии (движения или ортогональные преобразования). Собственные и       несобственные движения.
 
                               ТЕМА 5. ПРОЕКТИВНЫЕ ПРЕОБРАЗОВАНИЯ.
 
               5.1.  Центральная проекция. Бесконечно удаленные элементы евклидова пространства. Проективное пространство.
               5.2.  Интерпретация проективной прямой и проективной плоскости  в связке прямых. Однородные координаты точки на проективной прямой и проективной плоскости.
               5.3.  Проективные системы координат. Проективно-аффинные преобразования.
               5.4. Проективная классификация линий второго порядка.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНКИ УСПЕВАЕМОСТИ СТУДЕНТОВ



Методика формирования результирующей оценки опирается на Положение о балльно-рейтинговой системе оценки успеваемости студентов ВолГУ. Контроль текущей работы студентов в семестре осуществляется по результатам выполнения ими в течение семестра трех контрольных работ и текущей аттестации.

Выполнение каждой письменной контрольной работы оценивается от 0 до 12 баллов. Выполнение студентом заданий на каждом практическом занятии оценивается от 0 до 2 баллов. 

Рейтинговая оценка работы студента в каждом семестре равна сумме баллов за 3 контрольные работы и практические занятия, и может достичь 72 баллов. Студент, набравший в результате текущего семестрового контроля менее 20 баллов, к экзамену  не допускается; ему выставляется итоговая пятибалльная оценка "неудовлетворительно".

Экзамен  по дисциплине проводится в письменном виде. Экзаменационный билет содержит 5 пунктов, содержащих как теоретические вопросы, так и задачи. Ответ студента на каждый пункт билета оценивается от 0 до 8 баллов.

Итоговая рейтинговая оценка знаний студента равна сумме баллов, полученных в течение семестра за выполнение контрольных работ и заданий, и до 40 баллов, полученных за письменную экзаменационную работу в конце семестра (но не более 100 баллов).

Итоговая пятибалльная оценка по дисциплине определяется в соответствии со следующей схемой: если количество баллов не меньше 91, то выставляется оценка "отлично", иначе, если количество баллов не меньше 71, то выставляется оценка "хорошо", иначе, если количество баллов не меньше 60, то выставляется оценка "удовлетворительно".

В первом семестре студенты сдают экзамен, во втором семестре студенты сдают экзамен.